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Feynman-Kac semigroup

Let (Ω, (Xt)t∈R+ , (Ft)t∈R+ , (Px)x∈E ) be a càdlàg Markov process
on the state space E . Assume the transition Markov semigroup Pt

is symmetric in some L2(µ) and essentially irreducible.

Given a potential V : E → R, define the Feynman-Kac semigroup:

PV
t f (x) := Ex f (Xt) exp

(∫ t

0
V (Xs)ds

)
, ∀f > 0.

Let −LV be the lower-bounded self-adjoint Schrödinger operator
generated by PV

t . Define the lowest spectral point

λ0(V ) = inf

{∫
Vf 2dµ+

∫
f · (−LV f )dµ;

f ∈ D(LV ) ∩ L2(V +µ),

∫
f 2dµ = 1

}
.
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People are concerned with:

• When is λ0(V ) isolated in the spectrum σ(−LV )?

• How to characterize the ground state φ0 corresponding to
λ0(V )? For example, is φ0 strictly positive and “concave”?

• How to estimate the gap between λ0(V ) and the bottom of
essential spectrum of −LV ? Equivalently, how to estimate the
exponential convergence rate of the Markov process under
Girsanov transformation corresponding to ground state to its
stability state?

• Logarithmic Sobolev inequality with respect to φ2
0dµ....
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Girsanov semigroup

As a counterpart, we can also consider a Girsanov semigroup as
follows. Assume further that Xt is conservative.

Let ν � µ, and (Lt)t>0 is an additive Pµ-local martingale
associated with ν. Define a perturbation of Pµ by the Girsanov’s
formula:

Qν|Ft
:= exp

(
Lt −

1

2
〈L〉t

)
Pµ|Ft

,

Qt f (x) := EPν

[
f (Xt) exp

(
Lt −

1

2
〈L〉t

) ∣∣∣X0 = x

]
.

The conversation implies that 0 is just the lowest eigenvalue for
the generator of Qt . We can ask the same questions as previous.
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Existence

Indeed, we have found some criterions to yield the existence of the
spectral gap, see

Fuzhou Gong, Liming Wu, Spectral gap of positive operators and

applications. J. Math. Pures Appl. 85 (2006), 151–191.

For simplicity, here we just give an application to abstract Wiener
space (W,H, µ) endowed with the Ornstein–Uhlenbeck operator L.

Given b : W → H, especially b = ∇V , consider the Girsanov
semigroup associated to the diffusion operator Lb := L+ b · ∇.
We have:
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Theorem 1

If for some λ > 1 holds∫
exp(λ · |b|2H)dµ < +∞,

then Lb has a spectral gap in Lp(µ) for any p > 1.

Note that, the above integrability condition is sharp. However,
there was no nice estimates on the spectral gap or ground state.
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Roughly speaking, maybe some control on the “derivative” of b is
needed at least outside some bounded domain, otherwise a
high-frequency vibration on b outside a bounded domain maybe
impact heavily on the scale of spectral gap, but make no difference
to the integrability. Hence, in the first step one consider the case
that, there is a global control on the “derivative” of b = ∇V .
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Some notations:

Ω ⊂ Rn: a bounded convex domain of diameter D = diam(Ω);

V : Ω → R a convex potential;

L = −∆ + V : the Schrödinger operator on Ω with
Dirichlet boundary condition;

Eigenvalues of L: λ0 < λ1 ≤ λ2 ≤ . . ., limi→∞ λi = +∞;

Eigenfunctions of L: φ0, φ1, φ2, . . ., φi |∂Ω ≡ 0.

φ0 and λ0 are called the ground state and ground state energy,
respectively. φ0 is strictly positive in Ω.

Gap Conjecture (van den Berg, 1983): The spectral gap of L
satisfies

λ1 − λ0 ≥
3π2

D2
. (1)
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Example 2

Consider the one dimensional case Ω = (−D
2 ,

D
2 ) ⊂ R1 and V ≡ 0.

Then the operator is given by L = − d2

dt2 , and

Eigenvalues λi Eigenfunctions φi

i = 0 π2

D2 cos πt
D

i = 1 4π2

D2 sin 2πt
D

Therefore the spectral gap is 3π2

D2 .
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Known results

In one dimension:

Ashbaugh & Benguria (1989): If V is symmetric and
single-well (not necessarily convex), then the conjecture holds;

Lavine (1994): The conjecture holds if V is convex.

In higher dimensions:

Singer, Wong, Yau & Yau (1985): The gap λ1 − λ0 ≥ π2

4D2 ;

Qi Huang Yu & Jia Qing Zhong (1986): The gap

λ1 − λ0 ≥ π2

D2 ;

. . .;

Andrews & Clutterbuck (2011): The gap conjecture holds.
Basic idea: compare the spectral gap with one dimensional
case.
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Modulus of convexity

Let Ṽ ∈ C 1([−D
2 ,

D
2 ],R) be an even function, such that

∀ x , y ∈ Ω, x 6= y ,〈
∇V (x)−∇V (y),

x − y

|x − y |

〉
≥ 2Ṽ ′

(
|x − y |

2

)
. (2)

The function Ṽ is called a modulus of convexity of V .

Remark 3

(i) If the sign ≥ is replaced by ≤, then Ṽ is called a
modulus of concavity of V .

(ii) If V is convex, then we can choose Ṽ ≡ 0.
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Log-concavity estimate of ground state

Consider the one dimensional Schrödinger operator L̃ = − d2

dt2 + Ṽ

on the symmetric interval [−D
2 ,

D
2 ], satisfying the Dirichlet

boundary condition.

Denote by the corresponding objects by adding a tilde, e.g. λ̃i and
φ̃i , i = 0, 1, 2, . . ..

Theorem 4 (Andrews & Clutterbuck, JAMS, 2011, Theorem 1.5)

Assume that Ṽ is a modulus of convexity of V , i.e. (2) holds,
then log φ̃0 is a modulus of concavity of log φ0.
More precisely, ∀ x , y ∈ Ω, x 6= y,〈
∇ log φ0(x)−∇ log φ0(y),

x − y

|x − y |

〉
≤ 2(log φ̃0)

′
(
|x − y |

2

)
. (3)
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Remarks on Theorem 4

Remark 5

Recall that when V is convex, then Ṽ ≡ 0.

In this case, L̃ = − d2

dt2 has the ground state φ̃0(t) = cos πt
D ,

thus (log φ̃0)
′(t) = − π

D tan πt
D , t ∈ (−D

2 ,
D
2 ).

The log-concavity estimate (3) becomes〈
∇ log φ0(x)−∇ log φ0(y),

x − y

|x − y |

〉
≤ −2π

D
tan

(
|x − y |

2D

)
.

(4)

Brascamp & Lieb (JFA, 1976) proved a weaker result: if V is
convex, then the ground state φ0 is log-concave.
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Spectral gap comparison theorem

Theorem 6 (Andrews & Clutterbuck, JAMS, 2011, Theorem 1.3)

If Ṽ is a modulus of convexity of V , i.e. (2) holds, then
λ1 − λ0 ≥ λ̃1 − λ̃0.

Ingredients of the proof:

(i) the ground state transform: let ui (t, x) = e−λi tφi (x) and

v = u1
u0

= e−(λ1−λ0)t φ1
φ0

, then v(t, ·) ∈ C∞(Ω̄) and

∂v

∂t
= ∆v + 2∇ log φ0 · ∇v ;

(ii) sharp log-concavity estimate of ground state φ0 (Theorem 4);
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(iii) estimate of the modulus of continuity:

v(t, x)− v(t, y) ≤ Cṽ(t, |x − y |) = Ce−(λ̃1−λ̃0)t
φ̃1

φ̃0

(|x − y |).

Recall that v(t, x)− v(t, y) = e−(λ1−λ0)t(φ1
φ0

(x)− φ1
φ0

(y)),
hence ∀ t ≥ 0 and x , y ∈ Ω,

e−(λ1−λ0)t

(
φ1

φ0
(x)− φ1

φ0
(y)

)
≤ Ce−(λ̃1−λ̃0)t

φ̃1

φ̃0

(|x − y |)

which implies λ1 − λ0 ≥ λ̃1 − λ̃0.

Our purpose: give a probabilistic proof to the gap conjecture by
using the coupling by reflection.
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Equations for log φ0

In order to estimate the log-concavity of φ0, we observe that
−∆φ0 + Vφ0 = λ0φ0. Hence

∆ log φ0 + |∇ log φ0|2 = V − λ0.

Differentiating the equation leads to

∆(∇ log φ0) + 2
〈
∇ log φ0,∇(∇ log φ0)

〉
= ∇V , (5)

or equivalently, in component form,

∆(∂i log φ0) + 2
〈
∇ log φ0,∇(∂i log φ0)

〉
= ∂iV , 1 ≤ i ≤ n.
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Conservative diffusion

The above equations suggest us to consider the following SDE

dXt =
√

2 dBt + 2∇ log φ0(Xt) dt, X0 = x ∈ Ω. (6)

where Bt is an n-dimensional standard Brownian motion.

The diffusion (Xt)t≥0 is conservative, that is, starting from a point
x ∈ Ω, the process Xt will not arrive at the boundary ∂Ω.

Eric Carlen (Commun. Math. Phys., 1984), P.A. Meyer &
W.A. Zheng (Séminaire de probabilités, 1985);

We can also consider the one dimensional process ρ∂Ω(Xt),
where ρ∂Ω : Ω → R+ is the distance function to the boundary.
Using the properties of the drift 2∇ log φ0 = 2∇φ0

φ0
, we can

prove ρ∂Ω(Xt) > 0 a.s. ∀ t ≥ 0.

21 / 44



Spectral Gap of Semigroups
Fundamental Gap Conjecture
Comparison on Wiener Space
Further Research Problems

Andrews and Clutterbuck’s Proof
Log-concavity estimate of ground state
Probabilistic Proof of the Conjecture

Coupling by reflection

To introduce the coupling by reflection of (Xt)t≥0, we define

M(x , y) = In − 2
(x − y)(x − y)∗

|x − y |2
, x , y ∈ Rn, x 6= y ,

which is the matrix of the reflection mapping w.r.t. the hyperplane
passing through x+y

2 and perpendicular to the vector x − y .

Consider

dYt =
√

2 M(Xt ,Yt) dBt + 2∇ log φ0(Yt) dt, Y0 = y ∈ Ω. (7)

The coupled process (Xt ,Yt)t≥0 is called the coupling by reflection.
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Some notations

For η, δ > 0, define stopping times

τη = inf{t > 0 : |Xt − Yt | = η},
σδ = inf{t > 0 : ρ∂Ω(Xt) ∧ ρ∂Ω(Yt) = δ}.

In view of the log-concavity estimate (4), we consider the processes

αt = ∇ log φ0(Xt)−∇ log φ0(Yt),

βt =
Xt − Yt

|Xt − Yt |
,

Ft = 〈αt , βt〉.

Then d(Xt − Yt) = 2
√

2βt〈βt , dBt〉+ 2αt dt and

F0 =
〈
∇ log φ0(x)−∇ log φ0(y),

x − y

|x − y |

〉
.
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Two lemmas

Lemma 7

Assume that the potential V : Ω̄ → R is convex. Then for
t ≤ τη ∧ σδ,

dFt ≥ 〈βt , dMt〉, (8)

where

Mt =
√

2

∫ t

0

[
(∇2 log φ0)(Xs)− (∇2 log φ0)(Ys)M(Xs ,Ys)

]
dBs .

The proof follows from Itô’s formula, the equation (5) for log φ0

and the property of coupling by reflection:

d|Xt − Yt | =
〈 Xt − Yt

|Xt − Yt |
, d(Xt − Yt)

〉
= 2

√
2 〈βt , dBt〉+ 2Ft dt.
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Two lemmas

Let φ̃D,0(t) = cos πt
D , t ∈ [−D

2 ,
D
2 ] be the first Dirichlet

eigenfunction of the operator − d2

dt2 on the interval [−D
2 ,

D
2 ].

ψD(t) = (log φ̃D,0)
′(t) = − π

D tan πt
D , t ∈ (−D

2 ,
D
2 ).

Since ψD(t) explodes at t = ±D
2 , we take D1 > D and consider

φ̃D1,0, ψD1 . Then ψD1 ∈ C∞
b [0, D

2 ] and it satisfies

ψ′′D1
+ 2ψD1ψ

′
D1

= 0.

Lemma 8

Set ξt = |Xt − Yt |/2. We have for t ≤ τη ∧ σδ,

dψD1(ξt) =
√

2ψ′D1
(ξt)〈βt , dBt〉+ ψ′D1

(ξt)
[
Ft − 2ψD1(ξt)

]
dt.
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Log-concavity estimate of the ground state

Theorem 9 (Modulus of log-concavity)

Assume that the potential function V : Ω → R is convex. Then for
all x , y ∈ Ω with x 6= y, it holds〈

∇ log φ0(x)−∇ log φ0(y),
x − y

|x − y |

〉
≤ −2π

D
tan

(
π|x − y |

2D

)
.

Sketch of proof. Fix η > 0, δ > 0 and D1 > D. Lemmas 7 and 8
lead to

d
[
Ft − 2ψD1(ξt)

]
≥ dM̃t − 2ψ′D1

(ξt)
[
Ft − 2ψD1(ξt)

]
dt,

in which dM̃t is the martingale part.
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Sketch of proof

The above inequality is equivalent to

d

([
Ft−2ψD1(ξt)

]
exp

[ ∫ t

0
2ψ′D1

(ξs) ds

])
≥ exp

[ ∫ t

0
2ψ′D1

(ξs) ds

]
dM̃t .

Integrating from 0 to t ∧ τη ∧ σδ and taking expectation on both
sides give us

F0 − 2ψD1(ξ0) (9)

≤ E
([

Ft∧τη∧σδ
− 2ψD1(ξt∧τη∧σδ

)
]
exp

[ ∫ t∧τη∧σδ

0
2ψ′D1

(ξs) ds

])
.

Brascamp & Lieb (JFA, 1976): if V is convex, then the ground
state φ0 is log-concave. Hence Ft∧τη∧σδ

≤ 0 a.s.
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Sketch of proof

F0−2ψD1(ξ0) ≤ −2 E
(
ψD1(ξt∧τη∧σδ

) exp

[ ∫ t∧τη∧σδ

0
2ψ′D1

(ξs) ds

])
.

Lindvall & Rogers (Ann. Probab., 1986): the log-concavity of the
drift ∇ log φ0 implies the coupling (Xt ,Yt) is successful, i.e.,
τη ↑ τ < +∞ a.s.

Note that ψD1 is a bounded function on [0,D/2].

Moreover, ψ′D1
(z) = − π2

D2
1

sec2(πz
D1

) ≤ 0 for z ∈ [0,D/2], thus

exp
[ ∫ t∧τη∧σδ

0 2ψ′D1
(ξs) ds

]
≤ 1 for all t > 0.

Letting t ↑ ∞ and δ, η ↓ 0, the dominated convergence theorem
yields

F0 − 2ψD1(ξ0) ≤ −2 E
(
ψD1(ξτ ) exp

[ ∫ τ

0
2ψ′D1

(ξs) ds

])
= 0.
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If we do not use the results of Brascamp & Lieb (JFA, 1976) and
Lindvall & Rogers (Ann. Probab., 1986), then we need two more
estimates on the ground state φ0:

the first one concerns the near diagonal behavior of ∇ log φ0;

the second one is the asymptotics of ∇ log φ0 near the
boundary ∂Ω.

Lemma 10 (Near-diagonal estimate)

For any ε > 0, there is η1 > 0 such that for all x , y ∈ Ω with
|x − y | ≤ η1, it holds〈

∇ log φ0(x)−∇ log φ0(y),
x − y

|x − y |

〉
≤ ε.
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Lemma 11 (Near-boundary estimate)

Let η1 > 0 be given as in Lemma 10. There is δ1 > 0 small enough
such that if δ < δ1 and x ∈ ∂δΩ, y ∈ Ω with |x − y | > η1, it holds〈

∇ log φ0(x)−∇ log φ0(y),
x − y

|x − y |

〉
≤ −C1 log

δ1
δ

+ C2

for some constants C1,C2 > 0.

Now choose any ε > 0. Letting t ↑ ∞ in (9) yields

F0 − 2ψD1(ξ0)

≤ E
([

Fτη1∧σδ2
− 2ψD1(ξτη1∧σδ2

)
]
exp

[ ∫ τη1∧σδ2

0
2ψ′D1

(ξs) ds

])
for sufficiently small δ2 < δ1. By Lemmas 10 and 11, we can prove

Fτη1∧σδ2
− 2ψD1(ξτη1∧σδ2

) ≤ 2ε.
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Simple preparation

Recall the processes (Xt)t≥0 and (Yt)t≥0 defined in (6) and (7).

We still denote by ξt = |Xt − Yt |/2 which satisfies

dξt =
√

2 〈βt , dBt〉+ Ft dt ≤
√

2 〈βt , dBt〉 −
2π

D
tan

(
πξt
D

)
dt.

Lemma 12

We have for all t ≥ 0,

E sin

(
πξt
D

)
≤ exp

(
− 3π2t

D2

)
sin

(
π|x − y |

2D

)
≤ exp

(
− 3π2t

D2

)
.
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Proof of the gap conjecture (1). Recall the ground state transform

v = e−λ1tφ1

e−λ0tφ0
=: e−(λ1−λ0)tv0 solves

∂v

∂t
= ∆v + 2∇ log φ0 · ∇v .

Hence v(t, x) = Ev0(Xt), v(t, y) = Ev0(Yt).

Since v0 = φ1
φ0

is Lipschitz continuous on Ω̄ with a constant K > 0,

|v(t, x)− v(t, y)| ≤ E|v0(Xt)− v0(Yt)| ≤ KE|Xt − Yt | = 2KEξt .

Next sin πz
D ≥ 2z

D for z ∈ [0, D
2 ], hence

|v(t, x)− v(t, y)| ≤ KDE sin

(
πξt
D

)
≤ KD exp

(
− 3π2t

D2

)
,

where the last inequality is due to Lemma 12.
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Noting that v(t, x)− v(t, y) = e−(λ1−λ0)t(v0(x)− v0(y)), we
obtain

e−(λ1−λ0)t |v0(x)− v0(y)| ≤ KD exp

(
− 3π2t

D2

)
for all t ≥ 0 and x , y ,∈ Ω. Since v0 = φ1

φ0
is not constant, we

conclude that

λ1 − λ0 ≥
3π2

D2
.
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From Euclid to Wiener

In our opinion, the “modulus of convexity” performs uniformly as
a lower bound of Hessian(V ) in each direction and each interval.

And the most interesting thing is, this kind of control will be
inherited by the logarithm of ground state. It is a big advantage
arising from Andrews and Clutterbuck’s work.

Now, recall the first section, we make an attempt to introduce the
modulus of convexity to abstract Wiener space. It seems difficult
to generalize the arguments of Andrews and Clutterbuck directly,
due to the loss of compactness and regularity.

However, we still have similar results as follows.
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Notation

Denote by (W,H, µ) an abstract Wiener space and L∗ the
Ornstein–Uhlenbeck operator on W.

Let V ∈ Dp
1(W, µ) for some p > 1 satisfy the KLMN condition (see

Reed and Simon: Methods of modern mathematical physics, IV). Define

−L = −L∗ + V

to be a self-adjoint Schrödinger operator bounded from below.

Correspondingly, denote by L̃∗ the Ornstein–Uhlenbeck operator
on R1 with respect to the Gaussian measure.

Let Ṽ ∈ C 1(R1) ∩ L1(R1, γ1) be a symmetric potential satisfying
the KLMN condition too. Define

−L̃ = −L̃∗ + Ṽ .
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Variation formula

It is well known that, there are two equivalent min-max principles
for any self-adjoint operator H bounded from below.

That is µi = λi for all i > 0, which are defined as

1 µi = sup
ϕ0,ϕ1,...,ϕi−1

inf
ϕ∈D[H],‖ϕ‖=1,

ϕ∈[ϕ0,ϕ1,...,ϕi ]
⊥

(ϕ,Hϕ);

2 λi = inf
ϕ0,ϕ1,...,ϕi∈D[H]

sup
‖ϕ‖=1,

ϕ∈span{ϕ0,ϕ1,...,ϕi}

(ϕ,Hϕ).

By convention, ϕ0, ϕ1, . . . , ϕi are all linearly independent and
[ϕ0, ϕ1, . . . , ϕi ]

⊥ denotes the orthogonal completion of
span{ϕ0, ϕ1, . . . , ϕi}.
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Main Theorems

Theorem 13

Suppose for almost all w ∈ W and every h ∈ H with h 6= 0〈
∇V (w + h)−∇V (w),

h

‖h‖H

〉
H

> 2Ṽ ′
(
‖h‖H

2

)
. (10)

Then there exists a comparison

λ1 − λ0 > λ̃1 − λ̃0.

Hence, the existence of the spectral gap of −L on Wiener space
can sometimes be reduced to one dimensional case. Note that, V
doesn’t need to be convex at all.
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The next result gives the modulus of log-concavity for φ0.

Theorem 14

Assume the same condition as in Theorem 13 and the gap
λ̃1 − λ̃0 > 0. Then −L and −L̃ have a unique ground state
respectively. Moreover, for almost all w ∈ W and every h ∈ H with
h 6= 0,〈
∇ log φ0(w + h)−∇ log φ0(w),

h

‖h‖H

〉
H

6 2(log φ̃0)
′
(
‖h‖H

2

)
.

Our proof relies on the approximation of eigenvalues and
eigenfunctions, from bounded domains to n-dimensional Gaussian
spaces and thus to Wiener space.
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As a counterpart, we also compare λ1 of diffusion operator

−L = −L∗ +∇F · ∇
with λ̃1 of the one dimensional operator

−L̃ = − d2

dt2
+ (t + ω′(t))

d
dt
.

Here, the two functions F and ω are related by the following
inequality: for all h ∈ H and µ-a.e. w ∈ W,〈

∇F (w + h)−∇F (w),
h

‖h‖H

〉
H

> 2ω′
(
‖h‖H

2

)
.

Theorem 15

Assume that F ∈ Dp
1(W,R) satisfies

∫
W e−F dµ = 1. Suppose also

that ω ∈ C 1(R) is even, satisfying
∫

R e−ω dγ1 = 1 and

lim
t→∞

(ω′(t) + t) = +∞. Then we have λ1 > λ̃1.
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The following problems need to be studied in the further:

• How to prove the spectral gap comparison theorem by
probabilistic method when V has the non-zero modulus of
convexity?

• How to prove spectral gap comparison theorem under
Gong-Wu’s condition on b = ∇V when V has no global
modulus of convexity?

• How to extend the spectral gap comparison theorem to path
and loop spaces over compact Riemannian manifolds?
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Thank you for your attention!
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